Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 10, 2026
-
Free, publicly-accessible full text available June 9, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available December 9, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
Computation graphs are Directed Acyclic Graphs (DAGs) where the nodes correspond to mathematical operations and are used widely as abstractions in optimizations of neural networks. The device placement problem aims to identify optimal allocations of those nodes to a set of (potentially heterogeneous) devices. Existing approaches rely on two types of architectures known as grouper-placer and encoder-placer, respectively. In this work, we bridge the gap between encoder-placer and grouper-placer techniques and propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit. The framework consists of five steps, including graph coarsening, node representation learning and policy optimization. It facilitates end-to-end training and takes into account the DAG nature of the computation graphs. We also propose a model variant, inspired by graph parsing networks and complex network analysis, enabling graph representation learning and jointed, personalized graph partitioning, using an unspecified number of groups. To train the entire framework, we use reinforcement learning using the execution time of the placement as a reward. We demonstrate the flexibility and effectiveness of our approach through multiple experiments with three benchmark models, namely Inception-V3, ResNet, and BERT. The robustness of the proposed framework is also highlighted through an ablation study. The suggested placements improve the inference speed for the benchmark models by up to over CPU execution and by up to compared to other commonly used baselines.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Temporal networks representing a stream of timestamped edges are seemingly ubiquitous in the real world. However, the massive size and continuous nature of these networks make them fundamentally challenging to analyze and leverage for descriptive and predictive modeling tasks. In this work, we propose a general framework for temporal network sampling with unbiased estimation. We develop online, single-pass sampling algorithms, and unbiased estimators for temporal network sampling. The proposed algorithms enable fast, accurate, and memory-efficient statistical estimation of temporal network patterns and properties. In addition, we propose a temporally decaying sampling algorithm with unbiased estimators for studying networks that evolve in continuous time, where the strength of links is a function of time, and the motif patterns are temporally weighted. In contrast to the prior notion of a △ t -temporal motif, the proposed formulation and algorithms for counting temporally weighted motifs are useful for forecasting tasks in networks such as predicting future links, or a future time-series variable of nodes and links. Finally, extensive experiments on a variety of temporal networks from different domains demonstrate the effectiveness of the proposed algorithms. A detailed ablation study is provided to understand the impact of the various components of the proposed framework.more » « less
An official website of the United States government

Full Text Available